Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
نویسندگان
چکیده
منابع مشابه
Stacking-dependent band gap and quantum transport in trilayer graphene
Graphene1–3 is an extraordinary two-dimensional (2D) system with chiral charge carriers and fascinating electronic, mechanical and thermal properties4,5. In multilayer graphene6,7, stacking order provides an important yet rarely explored degree of freedom for tuning its electronic properties8. For instance, Bernal-stacked trilayer graphene (B-TLG) is semi-metallic with a tunable band overlap, a...
متن کاملStacking dependent electronic structure and transport in bilayer graphene nanoribbons
The stacking-dependent electronic structure and transport properties of bilayer graphene nanoribbons suspended between gold electrodes are investigated using density functional theory coupled with non-equilibrium Green’s functional method. We find substantially enhanced electron transmission as well as tunneling currents in the AA stacking of bilayer nanoribbons compared to either single-layer ...
متن کاملAtomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Diff...
متن کاملThe temperature dependent anisotropy constants of epitaxially grown PrCo5+x
The temperature dependent anisotropy of a highly textured epitaxial Pr–Co film with a single orientation of the crystallographic c-axis along MgO 001 is investigated by measuring angle dependent hysteresis loops at various temperatures. The measured magnetization curves are compared with calculated magnetization curves, which allows for a full analysis of the temperature dependent anisotropy co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2015
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4938466